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Introduction to the open ocean deep sea  

 

The deep sea comprises the seafloor, water column and biota therein below a 
specified depth contour. There are differences in views among experts and agencies 
regarding the appropriate depth to delineate the “deep sea”.  This chapter uses a 
200 metre depth contour as a starting point, so that the “deep sea” represents 63 
per cent of the Earth’s surface area and about 98.5 per cent of Earth’s habitat 
volume (96.5 per cent of which is pelagic). However, much of the information 
presented in this chapter focuses on biodiversity of waters substantially deeper than 
200 m. Many of the other regional divisions of Chapter 36 include treatments of 
shelf and slope biodiversity in continental-shelf and slope areas deeper than 200 m.  
Moreover Chapters 42 and 45 on cold water corals and vents and seeps, 
respectively, and 51 on canyons, seamounts and other specialized morphological 
habitat types address aspects of areas in greater detail.  The estimates of global 
biodiversity of the deep sea in this chapter do include all biodiversity in waters and 
the seafloor below 200 m.  However, in the other sections of this chapter 
redundancy with the other regional chapters is avoided, so that biodiversity of shelf, 
slope, reef, vents, and specialized habitats is assessed in the respective regional or 
thematic chapters. -sea exploration in the past few decades (Danovaro et al., 2014), a remarkably 

small portion of the deep sea has been investigated in detail (Ramirez-Llodra et al., 
2010), particularly in terms of time-series research (Glover et al., 2010). For the 
pelagic areas much less than 0.0001 per cent of the over 1.3 billion km

3 of deep 
water has been studied. The inevitable result is weaker characterization of deep-sea 
biodiversity compared to the shelf, slope and terrestrial realms.  Correspondingly 
this also means that continued scientific and surveying efforts may potentially 
change our current understanding of deep-sea biodiversity. There is strong evidence 
that the richness and diversity of organisms in the deep sea exceeds all other known 
biomes from the metazoan to the microbial realms (Rex and Etter, 2010; Zinger et 
al., 2011) and supports the diverse ecosystem processes and functions necessary for 
the Earth’s natural systems to function (Thurber et al., 2014). Moreover, the 
extensive species, genetic, enzymatic, metabolic, and biogeochemical diversity 



hosted by the deep ocean also holds the potential for new pharmaceutical and 
industrial applications. With up to millions of estimated deep-sea species (cf. 
Chapter 34; CoML, 2010; Grassle and Maciolek, 1992), although the true number of 
species may be less, (Appeltans et al., 2012, Costello et al., 2013; Mora et al., 2013a



Mengerink et al., 2014; Ramirez-Llodra et al., 2011). These are addressed in various 
chapters of Parts IV and V of this Assessment, with Chapters 11 (Capture Fisheries), 
21 (Offshore Hydrocarbon Industries), 20 (Land-based Inputs), 23 (Other Mining 
Industries), 25 (Marine debris) and 27 (Tourism) of particular relevance. 

 

Benthic realm 

 

2.1 Deep-sea margins 

The global continental margins extend for ~150,000 km (Jahnke, 2010) and 
encompass estuarine, open coast, shelf, canyon, slope, and enclosed-sea ecosystems 
(Levin and Sibuet, 2012). Deep-sea margins are those areas that lie beyond the shelf 
break, where the seafloor slopes down to the continental rise at abyssal depths, and 



Thus, throughout their depth gradient, continental margin slope areas exhibit the 
highest macrofaunal diversity and offer a potentially important refuge against future 
climate change, as mobile organisms could migrate upslope or downslope in search 
of suitable conditions (Rodriguez-Lazaro and Cronin, 1999; Yasuhara et al., 2008; 
2009).  

The diversity of meiofauna (32 µm-1,000 µm) exceeds that of the macrofauna and 
their diversity generally increases with depth; however, groups such as foraminifera 
and ostracods exhibit unimodal peaks in diversity  (Yasuhara et al., 2012b). 
Meiofaunal diversity may decline or increase with increasing bathyal depths 
(Narayanaswamy et al., 2013), generally driven by food availability and intensity and 
regularity of disturbance regimes, as well as by temperature and  local 
environmental conditions (Corliss et al., 2009; Yasuhara et al., 2012a; 2009; 2012b; 
2014). 

Russian and Scandinavian deep-sea expeditions described peak benthic megafaunal 
(>3 cm) diversity at mid-bathyal depths as early as the 1950s and 1960s, despite 
observing much lower megafaunal than meio- and macrofaunal diversity 



low-oxygen conditions may aggregate at the OMZs fringes where food is often 
abundant. 

1.1.2 Major pressures 

Multiple anthropogenic influences affect deep-sea habitats located close to land 
(e.g., canyons, fjords, upper slopes when continental shelves are very narrow), 
including organic matter loading (see Chapter 20), mine tailings disposal (Kvassnes 
and Iversen, 2013; Kvassnes et al., 2009), litter (Pham et al., 2014), bottom trawling 
(Pusceddu et al., 2014) and overfishing (Clark et al., 2007), enhanced or decreased 
terrestrial input, oil and gas exploitation (Ramirez-Llodra et al., 2011) and, potentially 
in future, deep-sea mining (see Chapter 23). Fishing on margins can also have 
indirect ecological effects at deeper depths (Bailey et al., 2009). These anthropogenic 
influences can modify deep-margin habitats through physical smothering and 
disturbance, sediment resuspension, organic loading, and toxic contamination and 
plume formation, with concomitant losses in biodiversity, declining energy flow back 
to higher trophic levels, and impacts on physiology from exposure to toxic 
compounds (e.g., hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), heavy 
metals) (see Ramirez-Llodra et al., 2011 for review).  

 

2.2 Abyss 

2.2.1 Status and trends for biodiversity 

The abyss (~3-6 km water depth) encompasses the largest area on Earth. Its vast 
areas of seafloor plains and rolling hills are generally covered in fine sediments with 
hard substrates associated with manganese nodules, rock outcrops and topographic 
highs (e.g. seamounts). The absence of in situ primary production in this 
comparatively stable habitat (apart from scant occurrence of chemosynthesis at 
hydrothermal vents and cold seeps; cf. Chapter 45) characterize an ecosystem 
adapted to a limiting and variable rain of particulate detrital material that sinks from 
euphotic zones. Nonetheless, the abyss supports higher levels of alpha and beta 
diversity of meiofauna, macrofauna and megafauna than was recognized only 
decades ago (Rex and Etter, 2010). The prevalence of environmental DNA preserved 
in the deep sea biases estimates of richness, at least in the microbial domain, adding 
a challenge to biodiversity study in the abyss using molecular methods (Pawlowski et 
al., 2011).   

Despite poorly known biodiversity patterns at regional to global scales (especially 
regarding species ranges and connectivity), some regions, such as the abyssal 
Southern Ocean (Brandt et al., 2007; Griffiths, 2010) and the Pacific equatorial abyss, 
are likely to represent major reservoirs of biodiversity (Smith et al., 2008). 

2.2.2 Major pressures  

The food-limited nature of abyssal ecosystems, and reliance on particulate organic 
carbon (POC) flux from above, suggest that all groups, from microbes to megafauna, 
will be highly sensitive to changes in phytoplankton productivity and community 
structure, and especially to changes in the quantity and quality of the export flux 
(Billett et al., 2010; Ruhl et al., 2008; Ruhl and Smith, 2004; Smith et al., 2008; Smith 
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et al.,2013). Climate warming in some broad areas may increase ocean stratification, 
reduce primary production, and shift the dominant phytoplankton community 
structure from diatoms to picoplankton, and reduce export efficiency, driving biotic 
changes over major regions of the abyss, such as the equatorial Pacific (Smith et al., 
2008).  However the effects of climate change, including ocean warming, on 
biodiversity are likely to vary regionally and among species groups in ways that are 
poorly resolved with current models and knowledge of ecosystem dynamics in the 
deep sea. In the future, deep sea mining may also become a pressure on abyssal 
areas of the deep sea, and potential effects are addressed in Chapter 21.  

 

2.3 Hadal  

2.3.1 The Hadal zone 

The Hadal zone, comprising ocean floor deeper than 6000 m, encompasses 
3,437,930 km2, or less than 1 per cent of total ocean area (Harris et al., 2014) and 
represents 45 per cent of its depth and related gradients. Over 80 separate basins or 
depressions in the sea floor comprise the hadal zone, dominated by 7 great trenches 
(>6500 m) around the margins of the Pacific Ocean, five of which extend to over 10 
km depth: the Japan-Kuril-Kamchatka, Kermadec, Tonga, Mariana, and Philippine 
trenches.  The Arctic Ocean and Mediterranean Sea lack hadal depths. These 
trenches are often at the intersection of tectonic plates, exposing them as potential 
epicentres of severe earthquakes which can directly cause local and catastrophic 
disturbance to the trench fauna. 

2.3.2 Status and trends for biodiversity 

Although the hadal zone contains a wide range of macro- 





In general, biodiversity patterns of non-nematode meiofauna and non-foraminiferal 
protists are especially poorly known in the deep sea.  

Most information about biodiversity in the deep sea is for the predominant soft-
substrate habitats. However, hard substrates abound in the deep sea in nearly all 
settings, and organisms that cannot be seen in a photograph or video image are hard 
to sample and study quantitatively. Thus knowledge of small-taxon biodiversity is 
best developed for deep-sea sediments.   

Beyond cataloguing diversity, even in those systems we have characterized, almost 
nothing is known about the ranges of species, connectivity patterns or resilience of 
assemblages and their sensitivity to climate stressors or direct human disturbance. 
There is also currently a lack of appropriate tools to adequately evaluate human 
benefits that are derived from the deep sea (Jobstvogt et al., 2014a; 2014b; Thurber 
et al., 2014). 

 

Pelagic realm 

 

3.1 Status and trends for biodiversity 

Between the deep-sea bottom and the sunlit surface waters are the open waters of 
the deep pelagic or “midwater” environment. This huge volume of water is the least 
explored environment on our planet (Webb et al., 2010). The deep pelagic realm is 
very diffuse, with generally low apparent abundances of inhabitants, although recent 
observations from submersibles indicate that some species may concentrate into 
narrow depth bands (Herring, 2002).  

The major physical characteristics structuring the pelagic ecosystems are depth and 
pressure, temperature, and the penetration of sunlight. Below the surface zone (or 
epipelagic, down to about 200 m), the deep layer where sunlight penetrates with 
insufficient intensity to support primary production, is called the mesopelagic zone. 
In some geographic areas, microbial degradation of organic matter sinking from the 
surface zone results in low oxygen concentrations in the mesopelagic, called OMZs 
(Robinson et al., 2010). This mesopelagic zone is a particularly important habitat for 
fauna controlling the depth of CO2 sequestration (Giering et al., 2014).  

Below the depth to which sunlight can penetrate (about 1,000 m) is the largest layer 
of the deep pelagic realm and by far the largest ecosystem on our planet, the 
bathypelagic region. This comprises almost 75 per cent of the volume of the ocean 
and is mostly remote from the influence of the bottom and its communities. 
Temperatures there are usually just a few degrees Celsius above zero. The boundary 
layer where both physical and biological interactions with the bottom occur is called 
‘benthopelagic’.  

The transitions between the various vertical layers are gradients, not fixed surfaces; 
hence ecological distinctions among the zones are somewhat blurred across the 
transitions. Recent surveys have shown a great deal of connectivity between the 



through the mesopelagic, to very low levels in the bathypelagic, increasing 
somewhat in the benthopelagic (Angel, 1997; Haedrich, 1996). Although abundances 
are low, because such a huge volume of the ocean is bathypelagic, even species that 
are rarely encountered may have very large total population numbers (Herring, 
2002). 

The life cycles of deep-sea animals often involve shifts in vertical distribution among 



even birds (emperor penguins) and reptiles (leatherback sea turtles). The amount of 
deep-sea squids consumed by sperm whales alone annually has been estimated to 
exceed the total landings of fisheries worldwide (Rodhouse and Nigmatullin, 1996). 

Horizontal patterns exist in the global distribution of deep pelagic organisms. 
However, the faunal boundaries of deep pelagic assemblages are less distinct than 
those of near-surface or benthic assemblages (Pierrot-Bults and Angel, 2012). 
Generally, the low-latitude oligotrophic regimes that make up the majority of the 
global ocean house more species than higher-latitude regimes (Hopkins et al., 1996). 
Some major oceanic frontal boundaries, such as the polar and subpolar fronts, 
extend down into deep waters and appear to form biogeographic boundaries, 
although the distinctness of those boundaries may decrease with increasing depth. 

The dark environment also means that production of light by bioluminescence is 
almost universal among deep pelagic organisms. Some animals produce the light 
independently, whereas others are symbiotic with luminescent bacteria. 

 

3.2 Major pressures 

A fundamental biological characteristic throughout the deep pelagic biome is that 
little or no primary production occurs and deep pelagic organisms are dependent on 
food produced elsewhere. Therefore, changes in surface productivity will be 
reflected in changes in the deep midwater. When midwater animals migrate into the 
surface waters at night, they are subjected to predation by near-surface species. 
Shifts in the abundance of those predators will affect the populations of the 
migrators and, indirectly, the deeper species that interact with the vertical migrators 
at their deeper daytime depths. Either or both of these effects may be caused by 
global climate change, fishing pressure and the impact of pollutants in surface 
waters (Robinson et al., 2010; Robison, 2009). 

Climate change will likely increase stratification caused by warming of surface waters 
and expanded OMZs resulting from the interaction of shifts in productivity with 
increased stratification. If the so-called conveyor-belt of global circulation weakens, 
transport of oxygen by the production of deep water will affect the entire deep sea. 
The biomass of mesopelagic fishes in the California Current, for instance, has 
declined dramatically during recent decades of reduced midwater oxygen 
concentrations (Koslow et al., 2011). Furthermore, increases in carbon dioxide 
resulting in acidification may affect diverse deep pelagic animals, including 
pteropods (swimming snails) and crustaceans which use calcium carbonate to build 
their exoskeletons, fishes that need it for internal skeletons, and cephalopods for 
their balance organs. Acidification also changes how oxygen is transported in the 
blood of animals and those living in areas of low oxygen concentration may 
therefore be less capable of survival and reproduction (Rosa and Seibel, 2008). 

Few fisheries currently target deep pelagic species, but fisheries do affect the 
ecosystem. Whaling reduced worldwide populations of sperm whales and pilot 
whales to a small fraction of historical levels (Roman et al., 2014). Similarly, fisheries 
for surface predators such as sharks, tunas and billfishes, and on seamounts, reduce 
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predation pressure, particularly on vertical migrators like squids and lantern fishes 
(Zeidberg and Robison, 2007).  

Increasing extraction of deep-sea hydrocarbon resources increases the likelihood of 
accidental deep release of oil and methane (Mengerink et al., 2014), as well as the 



bathyal species known from adjacent continental margins (See Chapter 45).  The 



high water flux through this gateway. Submarine ridges within the Arctic form 
physical barriers, but current evidence suggests that these do not form 
biogeographic barriers (Deubel, 2000; Kosobokova et al., 2011; Vinogradova, 1997).  

Bluhm et al. (2011) conservatively estimated the number of benthic invertebrate 



The region also contains many completely un-sampled areas for which nothing is 
known (e.g., Amundsen Sea, Western Weddell Sea, Eastern Ross Sea). These areas 
include the majority of the intertidal zone, areas under the floating ice shelves, and 
the greater benthic part of the deep sea. However, several characteristic features of 
Southern Ocean ecosystems include circumpolar distributions and eurybathy of 
many species (Kaiser et al., 2013).  

Both pelagic and benthic communities tend to show a high degree of patchiness in 
both diversity and abundance. The benthic populations show a decrease in biomass 
with increasing depth (Arntz et al., 1994), with notable differences in areas of 
disturbance due to anchor ice and icebergs in the shallows (Smale et al., 2008) and in 
highly productive deep fjord ecosystems (Grange and Smith, 2013). Hard and soft 
sediments from the region are known to be capable of supporting both extremes of 
diversity and biomass. In some cases, levels of biomass are far higher than those in 
equivalent habitats in temperate or tropical regions. A major international study led 
by Brandt revealed comparably high levels of biodiversity (higher than in the Arctic), 
thereby challenging suggestions that deep-sea diversity is depressed in the Southern 
Ocean (Brandt et al., 2007). Understanding of large-scale diversity distributions is 
improving (Brandt and Ebbe, 2009; Kaiser et al., 2013). For example, depth-diversity 
gradients of several taxa are known to be unimodal with a shallow peak comparable 
to those of the Arctic Ocean (Brandt et al., 2007; Brandt and Ebbe, 2009).es ar-2(n)-4(s)2-4(6o)-2(m)1han 







The most important ecosystem service of the deep pelagic region is arguably the 
“biological pump”, in which biological processes, such as the daily vertical migration, 
package and accelerate the transport of carbon compounds, nutrients, and other 



mineral-rich sediments and cobalt-rich crusts. Currently no commercial mining 
projects have started, although several projects are in the exploratory or permitting 
phase. From those exploratory studies and related research some knowledge of 
potential ecosystem effects is accumulating.   

Experimental studies to assess the potential impact of mining polymetallic nodules in 
the abyss have indicated that seafloor communities may take many decades before 
showing signs of recovery from disturbance (Bluhm, 2001; Miljutin et al., 2011), and 
may never recover if they rely directly on the nodules for habitat.  

The recovery of communities at active hydrothermal vents where SMS deposits may 
be exploited may be relatively rapid, because vent sites undergo natural 
disturbances which have seen some communities appear to recover from 
catastrophic volcanic activity within a few years (Tunnicliffe et al., 1997). However, 
the rates of recovery of benthic communities are likely to vary among sites.   

Other potential mining activities include exploiting mineral-rich sediments. For 
example in some deep marine sediments, phosphorite occurs as “nodules” (2 to 
>150 mm in diameter), in a mud or sand matrix, which can extend beneath the 
seafloor sediment surface to tens of centimetres depth.  

No mining has yet been authorized for such deposits but could result in the removal 
of large volumes of both the phosphorite nodules and the surrounding soft 
sediments, together with associated faunal communities and generate large 
sediment plumes. In addition, cobalt-



2000s, in response to the call in the World Summit on Sustainable Development 
(WSSD) for greater protection of the open ocean, the Conference of Parties to the 
Convention on Biological Diversity (CBD) developed and adopted criteria for the 
description of ecologically or biologically significant areas (EBSAs) in open-ocean 
waters and deep-sea habitats.  The application of the EBSA criteria is a scientific and 
technical exercise, and areas that are described as meeting the criteria may receive 
protection through a variety of means, according to the choices of States and 
competent intergovernmental organizations (decision X/29 of the CBD COP10). 
Expert reviews have concluded that both approaches can be complementary in 
achieving effective sustainable management in the deep sea (Rice et al., 2014; Dunn 
et al., 2014).  

 

7.2 Protection of the marine environment in the Area 

With regard to deep-



 
Figure 1. Deep-sea habitats. Top left: coral garden in the Whittard Canyon, NE Atlantic at approx. 500 
metres depth (2010; image courtesy of Jeroen Ingels); top right: A sea anemone, Boloceroides 
daphneae, on cobalt crust covering a seamount off Hawaii, 1000 metres depth (image courtesy of 
Chris Kelly, HURL); bottom left: An orange roughy (Hoplostethus atlanticus) aggregation at 890 metres 
depth near the summit of a small seamount (termed "Morgue") off the east coast of New Zealand 
(image courtesy of Malcolm Clark); bottom right: A reef-like coverage by stony corals (Solenosmilia 
variabilis) together with  prominent orange brisingid seastars on the summit of a small seamount 
(termed "Ghoul") feature  at 950 metres off the east coast of New Zealand (image courtesy of 
Malcolm Clark).  
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